Movimiento Parabólico
Se denomina movimiento parabólico al realizado por cualquier objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme. El movimiento parabólico es un ejemplo de un movimiento realizado por un objeto en dos dimensiones o sobre un plano. Puede considerarse como la combinación de dos movimientos que son un movimiento horizontal uniforme y un movimiento vertical rectilíneo.
Las ecuaciones del movimiento parabólico son:
- Las ecuaciones del m.r.u. para el eje x
- Las ecuaciones del m.r.u.a. para el eje y
Dado que, como dijimos anteriormente, la velocidad forma un ángulo α con la horizontal, las componentes x e yse determinan recurriendo a las relaciones trigonométricas más habituales:
Finalmente, teniendo en cuenta lo anterior, que y0 = H , x0 = 0, y que ay = -g , podemos reescribir las fórmulas tal y como quedan recogidas en la siguiente lista. Estas son las expresiones finales para el cálculo de lasmagnitudes cinemáticas en el movimiento parabólico o tiro oblicuo:
- Posición (m)
- Eje horizontal
- Eje vertical
- Velocidad (m/s)
- Eje horizontal
- Eje vertical
- Aceleración (m/s2)
- Eje horizontal
- Eje vertical
Ecuación de posición y de trayectoria en el movimiento parabólico
La ecuación de proyección de un cuerpo nos sirve para saber en qué punto se encuentra en cada instante de tiempo. En el caso de un cuerpo que se desplaza en dos dimensiones, recuerda que, de forma genérica, viene descrita por:
Sustituyendo la expresiones anteriores de la posición en el eje horizontal ( m.r.u. ) y en el eje vertical ( m.r.u.a. ) en la ecuación de posición genérica, podemos llegar a la expresión de la ecuación de posición para el lanzamiento horizontal.
La ecuación de posición del movimiento parabólico viene dada por:
Por otro lado, para saber qué trayectoria sigue el cuerpo, es decir, su ecuación de trayectoria, podemos combinar las ecuaciones anteriores para eliminar t, quedando:
Como cabía esperar, se trata de la ecuación de una parábola.
Por otro lado, será frecuente que en los ejercicios te pidan alguno de los siguientes valores.
Altura máxima
Este valor se alcanza cuando la velocidad en el eje y, vy , vale 0. A partir de la ecuación de velocidad en el eje vertical, e imponiendo vy = 0, obtenemos el tiempo t que tarda el cuerpo en llegar a dicha altura. A partir de ese tiempo, y de las ecuaciones de posición, se puede calcular la distancia al origen en el eje x y en el eje y.
Tiempo de vuelo
Se calcula igualando a 0 la componente vertical de la posición. Es decir, el tiempo de vuelo es aquel para el cual la altura es 0 (se llega al suelo).
Alcance
Se trata de la distancia máxima en horizontal desde el punto de inicio del movimiento al punto en el que el cuerpo impacta el suelo. Una vez obtenido el tiempo de vuelo, simplemente sustituye en la ecuación de la componente horizontal de la posición.
Ángulo de la trayectoria
El ángulo de la trayectoria en un determinado punto coincide con el ángulo que el vector velocidad forma con la horizontal en ese punto. Para su cálculo obtenemos las componentes vx y vy y gracias a la definición trigonométrica de tangente de un ángulo, calculamos α:
No hay comentarios:
Publicar un comentario